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Introduction
Gene therapies have emerged as new treatments with the power to transform disease trajectory by 
addressing the underlying genetic cause of disease. In the universe of drug therapies, these genetic 
treatments are unique. They require a new paradigm for valuing and pricing medical treatments as 
potentially one-time interventions that treat diseases for years or even lifetimes. Due to our cur-
rent reimbursement system, one-time treatments offering long-term benefits incur a high upfront 
cost. This proposition contrasts with current reimbursement systems that were built for chronic 
medications valued and priced based on monthly utilization, year after year, over a lifetime. 

Additional challenges to creating new valuation and pricing models appropriate to gene therapy 
include the precise and individualized nature of these therapies, which reduce market size con-
siderably. In addition, manufacturing and development of gene therapies are more expensive and 
require much more upfront investment in new technology and infrastructure. Finally, regulatory 
guidance for approval of gene therapies suggests clinical endpoints that may not be feasible for 
therapies that modify a disease over a lifetime. In totality, such challenges put financial pressure 
on companies that research and develop gene therapies and threaten future investment and inno-
vation.1–4

In this paper, we review the enormous potential value of gene therapy and the equally large 
threat of using dated financial models that can limit the growth of this critical new area of 
medicine. 

Figure 1. Types of gene therapies. 

Image source: U. S. Food and Drug Administration. What is Gene Therapy? https://www.fda.gov/vaccines-blood-biologics/
cellular-gene-therapy-products/what-gene-therapy

Defining Gene Therapy
The field of gene therapy is relatively new and still rapidly developing, with the first gene therapy 
approval in the U.S. occurring only six years ago.5 As has been extensively reviewed, different 
modalities with different routes of administration have overlapping and unique complexities 
related to development, clinical trials, manufacturing, regulatory issues, pricing, and cost-benefit 
analyses. 

Gene therapy can be broadly defined6 as the use or modification of genetic material to treat disease 
by: 

1. introducing or increasing the production of a protein with a therapeutic function, such as an
oncolytic (cancer-killing) gene;

2. replacing a dysfunctional gene with a functional copy; or
3. silencing a dysfunctional gene or gene mutation.

Gene therapies  
have emerged as  
new treatments with 
the power to transform 
disease trajectory 
by addressing the 
underlying genetic 
cause of disease.
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These effects can be achieved in multiple ways. In cell-based gene therapy, cells are taken from 
a patient, DNA is edited or introduced, and the cells are then re-transplanted back into that 
patient. Other gene therapies introduce DNA or RNA into a patient’s cells using a viral vector, 
which is given as an infusion into the blood or spinal fluid or as an intramuscular injection.7-11 A 
small molecule that silences a dysfunctional gene has also been approved by the Food and Drug 
Administration (FDA),5 and others are in development. See Figure 1 for an overview of the 
different types of gene therapies approved to date. 

This paper focuses on gene therapies that replace a dysfunctional gene via a viral vector. 

The Revolutionary Value of Gene Replacement Therapies
Genetic medicine is considered by many to be the next frontier for improving health.12 Gene 
replacement therapy (GRT) exemplifies genetic medicine because therapies are used only in 
patients with mutations in the gene replaced by that specific therapy.13–18 The transformative 
effects of these therapies include regaining sight with Luxturna (voretigene neparvovec-rzyl; 
Spark Therapeutics), which treats a rare inherited retinal dystrophy (IRD) that causes blind-
ness.19,20 Zolgensma (onasemnogene abeparvovec-xioi; Novartis) treats a rare disease, spinal 
muscular atrophy (SMA) Type 1, that, without treatment, typically causes death before the age 
of two years.18,21

The ability of GRTs to replace a dysfunctional or missing protein that lies on the causal path 
of disease makes these therapies particularly useful for rare and ultra-rare diseases or specific 
subsets of diseases. As such, the number of people who can benefit from any gene therapy is 
often small (Table 1). For example, there are approximately 10,000 children in the U.S. with 
Duchenne muscular dystrophy (DMD),22 for which the gene therapy Elevidys (delandistrogene 
moxeparvovec-rokl; Sarepta Therapeutics) was approved in 2023 under the accelerated approval 
pathway for children with DMD at ages four through five years.23 Additionally, fewer than 500 
children with DMD are born each year.24 Luxturna treats a subset of IRDs that cause progressive 
vision loss and eventual blindness early in life.15,25 Fewer than 2,000 people in the U.S. are affected 
by the rare disease Luxturna treats.26 Approximately 33,000 people in the U.S. are affected by 
hemophilia A,27 for which the gene therapy Roctavian (valoctocogene roxaparvovec-rvox; Biom-
arin Pharmaceutical) can be used to treat adults with severe cases.16

Table 1. Approved In Vivo Gene Replacement Therapies

Therapy Approved Disease treated
Prevalence at 
approval

Annual 
incidence

Projected 
 7-year market

ELEVIDYS (delandistrogene moxeparvovec-rokl) June 2023 Duchenne muscular dystrophy 1,050 500 4,550

HEMGENIX (etranacogene dezaparvovec-drlb) Nov 2022 Hemophilia type B 8,000 100 8,700

LUXTURNA (voretigene neparvovec-rzyl) Dec 2017 RPE65-associated retinal dystrophy 1,000–2,000 150 2,050–3,050

ROCTAVIAN (valoctocogene roxaparvovec-rvox) June 2023 Hemophilia type A 33,000 350 35,275

VYJUVEK (beremagene geperpavec) May 2023 Dystrophic epidermolysis bullosa 1,100 75 1,625

ZOLGENSMA (onasemnogene abeparvovec-xioi) May 2019 Spinal muscular atrophy 800 370 3,200

Genetic medicine is 
considered by many to 
be the next frontier for 
improving health.

Note: Both ELEVIDYS and ZOLGENSMA are, respectively, indicated for use in children 4–5 and 0–2 years old. Prevalence at approval is age-adjusted accordingly for both these therapies.
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Although these populations are small, treating these diseases, especially with therapies that may 
have to be given only once, is transformative, disease-modifying, and life-altering for those indi-
viduals. As detailed further in the section on Pricing Considerations for Gene Replacement 
Therapies, successfully treating the root causes of these diseases also substantially decreases 
healthcare costs, caregiver burdens, and overall disease burden. There are also improvements in 
quality of life and other societal contributions these individuals could make that can be meaning-
ful. These medical and societal savings and quality-of-life improvements must be considered when 
evaluating the price of gene therapies.

The transformative power of GRTs includes providing the first-ever treatment for some rare pedi-
atric diseases with significant unmet medical needs, such as IRD. The magnitude of GRT effects 
is also transformative: returning sight to blind children and preventing death in infancy.28,29 
Children with IRD who were blind regained enough vision to move around their environment 
without bumping into anything after treatment with Luxterna.28 Children with spinal muscular 
atrophy (SMA) Type 1 treated with a single dose of Zolgensma are living and meeting develop-
mental milestones at the age of eight when, without gene therapy, they typically would have died 
by the second year of life.29 Contrast SMA Type 1, a fast progressing fatal neuromuscular disease, 
to a slow progressing and fatal neuromuscular disease, like Duchenne. In Duchenne, patients 
experience irreversible loss of muscle function over the course of decades with certain death in 
the third decade of life. Therefore, measuring the impact of Elevidys infused at the age of four 
in delaying disease progression, such as the loss of ambulation or extending survival, will take 
years.30 Treatment with Elevidys has shown functional improvement more than four years after 
receiving treatment.30 Importantly, gene therapies can halt disease progression but do not reverse 
the damage that has already been done by a disease, making it critical to get these treatments to 
patients expediently.

All but one of the GRTs approved by the FDA to date were designed to be one-time treatments. 
Because the first US approval of GRT was only six years ago,5 it will take more time to assess if 
redosing is necessary. Additionally, scientific advances are still needed in order to redose to over-
come the challenge of suppressing antibodies to the viral vector that develop after gene therapy 
administration.32 Regardless, the potential ability to treat a disease in a single dose is another 
transformative aspect of these therapies that can substantially reduce the treatment burden. 

Notably, the treatment burden is even substantially reduced with the one approved GRT designed 
to be re-administered, Vyjuvek (beremagene geperpavec-svdt; Krystal Biotech). Vyjuvek treats 
dystrophic epidermolysis bullosa (EB),17 a severely disabling and disfiguring disease in which the 
skin forms blisters and tears easily.39 Wounds can be several inches in diameter and cause scarring 
and tissue damage. Vyjuvek is applied to the skin wounds every two weeks until healing occurs. 
In clinical trials, wounds treated with Vyjuvek were three times more likely to heal completely. 
Vyjuvek-treated wounds also healed more quickly and with less pain.40 Patients with dystrophic 
EB who previously may have required months-long treatment in a burn unit41 now can achieve 
significantly faster healing, fewer skin infections and less pain and scarring with office-based 
outpatient treatment.

The evidence shows that GRTs that address the root cause of disease are transformative. These 
treatments can prolong life, reduce disability, and lower the burden of treatment for rare diseases 
with high unmet need. Together, these features create a new value proposition. As we will discuss, 
GRTs also have unique development costs, manufacturing processes, and regulatory consider-
ations that should be reflected in any cost-benefit or pricing analysis. 

Pricing Considerations for Gene Replacement Therapy
The novel aspects of GRTs command a different pricing paradigm. Pricing a one-time dose that 
only hundreds or a few thousand patients will use vastly differs from pricing for medications that 

Although these 
populations are 
small, treating these 
diseases, especially 
with therapies that 
may have to be 
given only once, 
is transformative, 
disease-modifying, 
and life-altering for 
those individuals.
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may be used for diseases treating a larger population on an ongoing basis and paid for gradually 
throughout a patient’s lifetime. In addition, many GRTs treat conditions for which no treatments 
previously existed (e.g., IRD) or for which there were no or limited disease-modifying treatments 
(e.g., DMD, SMA, EB, and hemophilia). In this context, it is difficult—if not impossible —to 
set prices based on cost savings compared to other treatments. 

To date, the longest duration of GRT treatment after FDA approval is with Luxturna, for which 
no other treatments are available for cost comparison.16 The next longest duration is with Zolgens-
ma for SMA, which is four years.19 At the time Zolgensma was priced, the only other treatment 
available for comparison was Spinraza (nusinersen; Novartis), which is an antisense oligonucle-
otide that increases production of functional protein and requires administration into the spinal 
fluid every three-to-four months. The price for five years of Spinraza treatment is approximately 
$2 million, and the Zolgensma price is $2.1 million for a one-time treatment.41 Time will tell 
whether this is an equivalent price or cost savings as we learn if Zolgensma is, as hoped, effective 
as a one-time treatment. 

The FDA approved Hemgenix (etranacogene dezaparvovec-drlb; UniQure, CSL Behring) in 
2022 for treating hemophilia B,14 for which other previously available treatments exist. Because 
Hemgenix is also designed as a one-time treatment, we again compare the costs of five years of 
medication with the clotting factor. Before the advent of Hemgenix, treatment for hemophilia B 
necessitated multiple infusions of clotting factor each week to prevent potentially life-threatening 
bleeding events. Clotting factor prophylaxis costs $300,000 to $776,000 annually,42,43 or $1.5 to 
$3.8 million for five years. One-time treatment with Hemgenix is priced at $3.5 million,44 which 
falls within the upper bound of clotting factor prophylaxis. 

When considering cost-benefit analyses for any medical condition, it is essential to consider more 
than the price of a medication. Other direct medical costs include physician visits, hospitaliza-
tions, procedures, and laboratory tests. Indirect medical costs to the patient and society should 
also be considered. These costs can consist of needed modifications to homes and vehicles for 
the patient and family, caregiver burden, and decreased productivity for both patient and care-
giver, among other important factors. Some cost-effectiveness models do not consider the value 
of making patients productive members of society, which is a significant omission. Pioneer has 
written extensively on the flaws in certain cost-effectiveness methodologies and their potential to 
discriminate against large classes of patients including those living with disabilities, rare diseases, 
cancers, and other conditions. Lastly, it is crucial to include benefits to quality of life, daily func-
tioning, and psychosocial well-being. 

Between 2011 and 2019, patients with hemophilia B had direct healthcare utilization costs 25 
times higher than average for healthy individuals, including mean direct annual medical costs 
of $614,886 per patient.42-46 Hemophilia B patients report that one of their two most important 
outcomes is the ability to participate fully in family life, recreational activities, school, and work, 
which they frequently are unable to do due to actual bleeding events and the fear of bleeding 
events.46,47 Overall, patients report a 26 percent lower quality of life than healthy individuals.45 In 
clinical trials, treatment with Hemgenix reduced bleeding events by 80 percent,48 making it likely 
that these costs will be lower with Hemgenix. Indirect costs of chronic disease in the form of lost 
wages, care partner costs, and more can also be extremely burdensome, especially for diseases that 
cause substantial disability. For example, the indirect costs of IRD range from $1.4 to $2.5 million 
over the course of a lifetime.49 In 2014, the indirect costs of DMD were estimated at $80,000 to 
121,000 for each patient yearly plus $58,000 to $72,000 yearly for their household.50

Finally, when considering cost-benefit analyses and pricing decisions, there is the reality that 
these treatments meaningfully extend and may save patients’ lives. Treatment with Zolgensma 
for SMA Type 1 has resulted in children living four times longer than without treatment.51 The 
value of this time together for patients and their families is profound. With time, if Zolgensma 

Pricing a one-time  
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a patient’s lifetime.
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treatment maintains its expected durability, we may also see individuals with SMA making 
contributions to society that would have otherwise been impossible. The same can be said for 
DMD, who for the majority of those living with the disease are currently not eligible for disease 
modifying treatments that can potentially extend their lives beyond their 20s.30 

Development Costs of Gene Replacement Therapy
Innovators of GRTs face unique challenges compared with more traditional drug development. 
Drug developers must consider drug targets, mechanisms of action, pharmacodynamics (how the 
drug affects the patient), pharmacokinetics (how the patient processes the drug), drug elimination 
rates, and administration routes. Developers of GRTs must evaluate these elements for both the 
delivery vector and the genetic material delivered and the two in combination, tripling the com-
plexity of development. Furthermore, the ability to deliver the vector to the specific tissue where 
the replacement gene needs to be expressed must be optimized. In addition, GRT developers 
must consider the response of a patient’s immune system to the vector, the genetic material, and 
the cells that incorporate that material. These factors further increase the complexity and cost of 
GRT development, as do the related intellectual property and regulatory considerations for each 
of the multiple and repeated steps.52-54 

Although each new GRT may use some of the same elements of previously approved therapies, 
each treatment targets a different gene such that the exact makeup of the vector and transgene 
is unique. As such, the current regulatory paradigm requires safety studies for every new GRT 
with no potential to extrapolate from studies of other GRTs that leverage some of the same com-
ponents. The preclinical safety testing is extensive, the lowest initial doses in humans are often 
very small, and the time to escalate to a higher dose can be long. In recognition of the significant 
challenge this presents, the National Center for Advancing Translational Sciences (NCATS) 
has initiated a project to design a “platform vector” that would enable such extrapolations when 
using the same vector to target the same tissue with a different transgene.55 Safety studies are 
also complicated by the one-time treatment design of GRT, which is an advantage for treatment 
efficacy but also requires a higher bar for measuring safety. As a result, trials are lengthier and 
costlier than for other types of medications.

The high costs of developing GRTs, as described in Manufacturing Costs, combined with the 
smaller populations for whom these treatments are effective (Table 1), make it much more difficult 
to recoup the money invested in developing GRTs. At the same time, the overall cost to society is 
not necessarily higher, considering the price multiplied by the small number of people affected. In 
other words, a budget-impact analysis demonstrates that the overall healthcare budget may not be 
significant. For example, Luxturna is priced at $850,000 and is indicated for a population of 2,000 
people in the U.S.,27 with just a few new cases each year,56 giving it a maximum impact of less 
than $2 billion for more than a decade of treatment. For comparison, we consider the small molecule 
treatments Xalcori (crizotinib, Pfizer) and Alunbrig (brigatinib, Takeda Pharmaceuticals), which 
are both for a rare type of non-small cell lung cancer (NSCLC). The incidence of the treated dis-
ease is approximately 10,000 per year and the treatments are priced around $240,000 per year for 
an impact of $2.5 billion for just one year of treatment.57,58 Considering that this disease has onset 
in the seventh decade of life and preliminary data suggest the median survival is longer than five 
years,59 treatment could increase years lived by 12 years at a cost of $2.8 million. In contrast, gene 
therapies with similar life-time medication costs may provide larger increases in life expectancy 
to deliver more cost-effective care.

Costs to society for developing each new GRT may also be offset by “scientific spillover,” which 
is “the potential for healthcare interventions to have consequences beyond those initially intend-
ed.”60 In the case of GRT, potential positive spillover includes improvements in safety monitoring, 
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outcome assessment, dose evaluation, patient selection, and engineering of gene constructs and 
carriers.61 The potential spillover from each new GRT can accelerate advancement of future GRT 
development, especially for rare diseases, in which it is challenging to develop therapies in isola-
tion. Considering the spillover effect, it may be that investment in early gene therapies will lead 
to lower costs of producing these in the future. Therefore, it is reasonable to reward investment in 
GRT with higher valuations and pricing.

Manufacturing Costs for Gene Replacement Therapy
Producing GRTs requires many complex phases, each with more steps than manufacturing small 
molecules (Figure 2).62 A highly trained workforce is also required. First, vector and transgene 
constructs are produced, and cells that will be used to replicate the vector and transgene are 
grown. Next, the GRT materials are inserted into cells that must be grown in dishes or flasks and 
kept in incubators. As cells grow and divide, they produce more GRT, take up more space and use 
more incubators. Maintaining the cells requires a sterile technique with multiple complexities.63 
Once enough GRT is produced, the cells are burst open or lysed, and the resulting solution is 
purified to achieve maximal purity and yield of the GRT. Multiple rounds of purification are 
required, and there is a substantial reduction in the yield of GRT at each round.53 As shown in 
Figure 2, this is in contrast to small molecule production in which chemicals are put into giant 
containers to synthesize a medication, which then is granulated, dried, blended, and compressed 
or encapsulated with no product loss during the process.64 Because of these differences, the overall 
cost of manufacturing a single dose of GRT is significantly higher than that of a small molecule. 

Figure 2. Production of small molecule therapies typically takes eight steps with minimal 
loss of product throughout the process, whereas production of gene therapy typically takes 
eighteen steps with multiple rounds of purification during which some product is lost.
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Further, growing enough cells to replicate GRTs at scale requires a large manufacturing facility 
and infrastructure capabilities that may differ from one GRT to another, creating the need for 
bespoke manufacturing processes and training. The dose and volume for each GRT also varies 
based on the replaced gene’s role in the body. For example, a smaller dose and volume of Luxturna 
is needed for IRD, in which only the eye is targeted, compared with hemophilia or DMD, in 
which weight-based doses are required and given systemically.51,65 This adds to the cost for these 
treatments, both directly in that a higher volume of treatment costs more and because they require 
a large amount of manufacturing infrastructure, much of which remains to be built.66,67 Although 
the associated costs are expected to decrease as infrastructure and capacity are built, the up-front 
investment in manufacturing GRT requires considerable capital.66 

Current Policies May Discourage Innovation and Development 
of New Gene Replacement Therapies
Despite the high value of GRTs and the potential cost-effectiveness of these one-time or infre-
quently dosed disease-modifying treatments, current policies may discourage future investment 
and innovation in this field. These include how cost-benefit analyses are conducted, FDA regula-
tions regarding manufacturing and clinical trials, and the different revenue generation curves for 
these treatments. 

Most cost-effectiveness analyses compare the healthcare-related direct medical costs of one med-
ication vs. another.68 However, these are typically reduced with disease-modifying therapies.69 
Such an environment puts downward pressure on pricing, making it difficult for investors in 
GRT to recoup their sunk costs in a reasonable amount of time. Particularly when looking at gene 
therapies, it is essential to capture all medical costs as well as societal costs associated with the 
disease. It is also necessary to understand what the patient population in question values and what 
treatment benefits they view as meaningful. When this is ignored, we can undervalue treatments 
that bring huge value and advances to patients or overvalue treatments that ultimately do not 
provide meaningful value to patients. 

Current FDA regulations require using commercially representative material early in the clinical 
trial process. Thus, GRT developers must invest in large-scale manufacturing capabilities requir-
ing significant capital investment before having signs of clinical efficacy in humans. In addition to 
the burden of up-front investment in manufacturing, such regulatory policies prevent developers 
from taking advantage of new manufacturing innovations. Recent FDA guidance states that even 
when manufacturing changes improve therapeutic agents, the agency may not view a product 
produced with a different process as comparable to those produced with previous processes. Under 
this policy, even improvements in GRT manufacturing that could decrease the high manufactur-
ing costs, improve product yield, or improve safety may require a new investigational drug (IND) 
application, new safety studies, and new clinical trials. These policies disincentivize companies 
from innovating or improving their manufacturing processes to avoid delays associated with pre-
paring a new IND or conducting new clinical studies. An alternative would be to consider using 
the International Harmonization of Technical Requirements for Pharmaceuticals for Human Use 
(ICH) standards that evaluate manufacturing processes’ compliance with best quality, safety, and 
efficacy practices.70 

The FDA also strongly recommends placebo-controlled clinical trials that make patient recruit-
ment challenging and more costly, especially for rare, serious diseases with extremely small 
patient populations for which the window of opportunity to provide disease-modifying treatment 
may be narrow. In the context of slow, irreversibly progressive diseases, requiring patients to be 
on a placebo also presents ethical challenges as patients will continue to irreversibly progress 
during the trial. As recruitment becomes more complex, more clinical sites have to be added 
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to trials, increasing costs and time to completion of the trial. Such policies increase the risks of 
developing GRTs and disincentivize further innovation and development. The use of novel trial 
designs, such as single-arm studies with an external control (e.g., a natural history comparator), 
has successfully been leveraged as an alternative to traditional, double-blind placebo-controlled 
randomized trials.71 

The FDA prefers traditional trial designs, which can be challenging to statistically power for rare 
diseases because of the small pool of potential participants who could be treated with a new GRT. 
Smaller cohorts make it more difficult to show the statistical significance of any effect of medi-
cation. Additionally, diseases with a genetic basis often have highly variable symptoms between 
individuals,72 making it difficult to identify the appropriate clinical endpoint for all participants. 
Finally, many fatal genetic diseases are slow progressing, such that the mandate to reach a clinical 
endpoint extends the length of the trial (i.e. 10-year trial), again increasing costs and risks and 
most especially would delay the patient community from getting access to an FDA-approved 
drug. This makes many of these treatments ideal candidates for the FDA’s Accelerated Approval 
Pathway.73 Accelerated approval allows earlier approval of medications that fill an unmet medical 
need based on a surrogate endpoint. Using a surrogate endpoint can significantly shorten the 
time needed in a trial to show benefit, ultimately allowing the innovator to bring the treatment to 
patients sooner. Once approved via accelerated approval, the innovator is still required to complete 
confirmatory trials to show the drug does provide the asserted benefit to patients. 

Figure 3. Potential revenue curves for a gene therapy for ultra-rare conditions, such as 
hemophilia A, which affects ~33,000 people in the U.S. (red) vs a monoclonal antibody for 
a rare condition, such as rheumatoid arthritis, which affects ~1.3 million people in the U.S.

 

Theoretical new MAb for RA ROCTAVIAN (valoctocogene roxaparvovec-rvox)

Misguided federal and state drug pricing pressures, high costs related to manufacturing, and reg-
ulatory uncertainty deter investors, creating significant barriers to the revenue generation curve of 
GRTs compared to traditional medications (Figure 3). In addition, high interest rates have made 
it harder for biotech companies to raise capital. In 2023, the number of biotech bankruptcies 
reached a new height, primarily due to the inability to raise capital and finance debt.74 Large bio-
tech companies have been discontinuing gene therapy programs, in part because of perceived risk 
and poor return on investment. Most gene therapies are developed by small companies, making 
it essential that investors see benefit in the prospect of a successful gene therapy and continue to 
invest in these companies and products. Without such investments, these small and often start-
up organizations cannot continue developing GRT, leaving patients with unmet medical needs. 
Medications that are needed across the lifespan have a more gradual rise in revenue that continues 
until most eligible patients are using the drug and then plateaus at a predictable rate based on the 
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number of people starting or discontinuing treatment for any reason. After this time, the potential 
revenue drops rapidly to reflect the incidence of the rare disease treated, creating a lower plateau. 
This different revenue generation model demands a deep pipeline and faster development of new 
agents for GRT companies to remain in business, support new research and development, and 
provide a return to their investors. Regulations that disincentivize innovation and lengthen the 
time to market for GRTs make this problematic and may drive investors away. To ensure a robust 
pipeline of gene therapies and that patients can access these promising treatments in the future, 
the regulatory and reimbursement environments must adapt to address the complexities of 
bringing gene therapies to market.

Conclusion
Replacing a dysfunctional gene with a functional version is transformative. These t reatments 
improve quality of life, return function, and decrease burdensome symptomatic and ancillary 
care. All GRTs are disease-modifying by nature as they target the causal path of disease. GRTs 
can reduce the lifetime costs of caring for people with rare and debilitating diseases. Some also 
have the priceless quality of prolonging and perhaps even saving lives.

There is downward pressure on pricing as those who analyze costs and benefits must adapt to a 
one-time vs chronic treatment model. New models and pricing paradigms need to be developed 
to fully account for the transformative value of GRTs so that they continue to be developed and 
innovation can occur. Such novel economic evaluation will ultimately help realize the potential of 
these treatments and can transform how we treat chronic conditions, substantially reducing the 
burden of illness. 

The high costs of developing GRTs due to their inherent complexity, development, and manu-
facturing costs, as well as significant regulatory burdens, are barriers to investment. Lowering 
investment risks by addressing development costs, modernizing pricing evaluation, and easing 
regulatory burdens will likely attract more investors and companies. Such forward-thinking 
pol-icies can breed competition and accelerate innovation for these high-value treatments for 
patients looking for cures or long-term management of their disease. 

Recommended Considerations
•	 Pricing -  Assessing the price of the gene therapies must consider the lifetime of value of those

therapies.
•	 Price comparison - To compare the price of gene therapy to traditional biopharmaceuticals

utilized chronically, overall cost reductions throughout a patient’s lifetime must be considered.
•	 Investment - Long-term viability of gene therapy research requires long-term investment by

both the public and private sector
•	 Patients - The evaluation of the impact of gene therapy should involve reduced lifetime burden

on patients and caregivers compared to chronic management of patients’ disease, which may
not be as effective.

•	 Research/Development/Manufacturing - The viability of the gene therapy market
involves a different regulatory approach than the one typically utilized to manage traditional
biopharmaceuticals.

New models and 
pricing paradigms 
need to be developed 
to fully account for 
the transformative 
value of GRTs so 
that they continue 
to be developed and 
innovation can occur.

Replacing a 
dysfunctional gene with 
a functional version 
is transformative. 
These treatments 
improve quality of life, 
return function, and 
decrease burdensome 
symptomatic and 
ancillary care.
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