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Review of Final Draft Core Standards

R. JAMES MILGRAM

What follows are my comments on the final draft of the CCSSI Core Mathematics
Standards. There are a number of standards including, but not limited to 1-OA(6), 2-
OA(2), 2-NBT(5), 3-OA(7), 3-NBT(2), 4-OA(4), 4-0OA(6), 4-NF(1), 4-NF(2), 5-0OA(3),
8-G(2), 8-G(4), F-LQE(5), G-SRT(4) that are completely unique to this document, and
most of them seem problematic to me. I have repeatedly asked for references justifying
the insertions of these or similar standards in previous drafts, but references have not been
provided. Consequently, to my knowledge, there is no real research base for including any
of these standards in the document.

Basic Arithmetic and Arithmetic Operations.
Here are 1-OA(6), 2-OA(2), 3-OA(7), 2-NBT(5), 3-NBT(2), 4-OA(4), and 4-OA(6):

1.0A(6) Add and subtract within 20, demonstrating fluency for addition and subtraction
within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2
+ 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 4 =13 3 1
=10 1 =9); using the relationship between addition and subtraction (e.g., knowing
that 8 + 4 = 12, one knows 12 8 = 4); and creating equivalent but easier or known
sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 =12 + 1 = 13).

2.0A(2) Fluently add and subtract within 20 using mental strategies.
2 By end of Grade 2, know from memory all sums of two one-digit numbers.

2-NBT(5) Fluently add and subtract within 100 using strategies based on place value, properties
of operations, and/or the relationship between addition and subtraction.

3-NBT(2) Fluently add and subtract within 1000 using strategies and algorithms based on place
value, properties of operations, and/or the relationship between addition and sub-
traction.

3-OA(7) Fluently multiply and divide within 100, using strategies such as the relationship
between multiplication and division (e.g., knowing that 8 5 = 40, one knows 40+5 =
8) or properties of operations. By the end of Grade 3, know from memory all products
of two one-digit numbers.

4-OA(4) . Determine the unknown whole number in a multiplication or division equation
relating three whole numbers. For example, determine the unknown number that
makes the equation true in each of the equations 8 7 =48, 5=7 3,6 6 ="7.

4-OA(6) . Understand division as an unknown-factor problem. For example, find 32 + 8 by
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finding the number that makes 32 when multiplied by 8.
Note that

e most of these standards have some sort of fluency requirement for operations in a
range, but no requirement that the algorithm being used is either general or general-
izable. Also,

e note the extremely excessive pedagogical constraints in 1-OA(6), 3-OA(7).

e Note that 4-OA(6) is actually a definition, and part of a definition that is given at
least one year earlier in virtually all the high achieving countries at that.

Specifically, subtraction is defined in the following way: a — b is that number c,
if it exists, so that b + ¢ = a, while division is defined by a + b is that number, ¢,
if it exists, so that b x ¢ = a.

With these understandings, the students in the high achieving countries only have
to learn and master two operations, addition and multiplication, since the other two
come along for free. Moreover, this is a key piece of the underpinnings for their
success. But we are, instead, given 4-OA(6) which is neither fish nor fowl.

As regards fluency, I note that ultimately with
4-NBT(4) Fluently add and subtract multi-digit whole numbers using the standard algorithm.
5-NBT(5) Fluently multiply multi-digit whole numbers using the standard algorithm.
6-NBT(2) Fluently divide multi-digit numbers using the standard algorithm.
expectations are that students will fluently operate with reasonable variants of the stan-
dard algorithms. But what will be the effects of the previous fluency requirements, except
long-term confusion about key details of what is to be expected? So we can well imagine
average and weaker students using some weird mnemonics to handle operations in certain
ranges, and trying to combine this with a kind of dim understanding of how the standard
algorithms work.
To further add to the confusion surrounding these core standards, note the following
entirely reasonable standards that can only be regarded as competing with the “fuency”

standards within the document.

2-NBT(6) Add up to four two-digit numbers using strategies based on place value and properties
of operations.

2-NBT(7) Add and subtract within 1000, using concrete models or drawings and strategies based



9-NBT(9)

3-NBT(3)

4-NBT(5)

4-NBT(6)

5-NBT(6)

on place value, properties of operations, and/or the relationship between addition and
subtraction; relate the strategy to a written method. Understand that in adding or
subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens
and tens, ones and ones; and sometimes it is necessary to compose or decompose tens
or hundreds.

Explain why addition and subtraction strategies work, using place value and the
properties of operations This is almost certainly too advanced for second grade, but
indicates a viable direction for student exploration in this and later grades.

Multiply one-digit whole numbers by multiples of 10 in the range 1090 (e.g., 9 x 80,
5 x 60) using strategies based on place value and properties of operations.

Multiply a whole number of up to four digits by a one-digit whole number, and mul-
tiply two two-digit numbers, using strategies based on place value and the properties
of operations. Illustrate and explain the calculation by using equations, rectangular
arrays, and/or area models.

Find whole-number quotients and remainders with up to four-digit dividends and
one-digit divisors, using strategies based on place value, the properties of operations,
and/or the relationship between multiplication and division. Illustrate and explain
the calculation by using equations, rectangular arrays, and/or area models.

Find whole-number quotients of whole numbers with up to four-digit dividends and
two-digit divisors, using strategies based on place value, the properties of operations,
and/or the relationship between multiplication and division. Illustrate and explain
the calculation by using equations, rectangular arrays, and/or area models.

The seven standards above would have been exemplary if they had not ocurred after the
“fluency” standards for unconstrained algorithms that I had objected to at the beginning
of this discussion. Within the document itself, there seems to be a minor war going on,
and this is not something we should hand over to our teachers.

The above standards illustrate many serious flaws in the Core Standards. Also among

these difficulties are that a large number of the arithmetic and operations, as well as the
place value standards are one, two or even more years behind the corresponding standards
for many if not all the high achieving countries. Consequently, I was not able to certify
that the Core Mathematics Standards are benchmarked at the same level as the standards
of the high achieving countries in mathematics.



FRACTIONS

Just as there are serious concerns with the coherence of the Core Standards for basic
arithmetic and place-value, there are also concerns with the coherence of the Core Stan-
dards for fractions, though here the difficulties are somewhat more subtle. Fractions first
appear in grade 3 in Core Standards which is somewhat late by international expectations,
but not too out of line.

3-NF(1) Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned
into b equal parts; understand a fraction a/b as the quantity formed by a parts of size
1/b.

3-NF(2) Understand a fraction as a number on the number line; represent fractions on a
number line diagram.

a. Represent a fraction 1/b on a number line diagram by defining the interval from
0 to 1 as the whole and partitioning it into b equal parts. Recognize that each
part has size 1/b and that the endpoint of the part based at 0 locates the number
1/b on the number line.

b. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b
from 0. Recognize that the resulting interval has size a/b and that its endpoint
locates the number a/b on the number line.

3-NF(3) Explain equivalence of fractions in special cases, and compare fractions by reasoning
about their size.

a. Understand two fractions as equivalent (equal) if they are the same size, or the
same point on a number line.

b. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3).
Explain why the fractions are equivalent, e.g., by using a visual fraction model.

c. Express whole numbers as fractions, and recognize fractions that are equivalent
to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1
= 6; locate 4/4 and 1 at the same point of a number line diagram.

d. Compare two fractions with the same numerator or the same denominator by
reasoning about their size. Recognize that comparisons are valid only when the
two fractions refer to the same whole. Record the results of comparisons with the
symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction
model.

Remark. This “visual fraction model” represents all that is wrong in our standard ap-
proach to fractions - an approach that has seldom worked. From the glossary, we have



VISUAL FRACTION MODEL. A tape diagram, number line diagram, or area model.

In short, what is done is to use three separate and basically unconnected models for
fractions to decide if statements are true, false, or ambiguous. In particular, referring back
to 3-NF(3), we have the separate notions of position on the number line and size. These are
initially very different concepts when matched to student experience with numbers. Size
refers to counting, but when dealing with fractions, counting is not appropriate except in
the “partitive” model, which is abandonded very early in the development of this subject
in the high achieving countries.

Indeed, what is done in the high achieving countries is to refer fractions entirely back
to the number-line as soon as this becomes feasible — usually sometime in second grade
or at the beginning of grade 3 — and not refer to size except in-so-far as a number on the
number line to the right of another number is said to be larger.

Another point where the handling of fractions is problematic is in fourth grade:

4-FN(1) Explain why a fraction a/b is equivalent to a fraction (n x a)/(n x b) by using visual
fraction models, with attention to how the number and size of the parts differ even
though the two fractions themselves are the same size. Use this principle to recognize
and generate equivalent fractions.

There are many ways to handle this, but visual fraction models is pretty much the
worst. One thing that can be done is to observe that the point on the number line
associated to (n x a)/(n x b) is exactly the same as the point associated to a/b provided
b # 0. So “equivalent fraction” can be taken to mean “fraction representation by the same
point on the number line,” and, again, in the high achieving countries, this is the approach
taken:

For information, here is the teaching sequence in grades 2 - 4 for fractions in Singapore:
Teaching sequence, Singapore, grades 2 - 4 The initial presentation of fractions in

the Singapore programs occurs in the second half of second grade, and is developed using
an area model where care is taken to be sure that the regions that decompose a geometric
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In the second part of the grade three text fractions continue to be developed using an area
model, but the level of sophistication as increased significantly:
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In the fourth grade the area model is moved systematically towards seeing fractions on the
number line as the basic operations of addition and subtraction of fractions are developed:

g 1 3
7. Add = and o

Remark: In the Russian texts translated by UCSMP the sequencing is very similar except
that representing fractions on the number line is already present in grade 3.

The next problem is with the standard

4-FN(2) Compare two fractions with different numerators and different denominators, e.g.,
by creating common denominators or numerators, or by comparing to a benchmark
fraction such as 1/2. Recognize that comparisons are valid only when the two fractions
refer to the same whole. Record the results of comparisons with symbols >, =, or <,
and justify the conclusions, e.g., by using a visual fraction model.

The first part of this standard is exemplary, but it is completely distorted by what follows.
What does in mean to compare to “a benchmark fraction?” And this is only made worse
by the requirement that students “recognize that comparisons are valid only when two
fractions refer to the same whole.” This is an entirely unappetizing admixture of apples
and spoiled oranges.



Geometry

The approach to geometry in Core Standards is very unusual, focusing in eighth grade
and beyond on using the Euclidian and extended Euclidean groups to define congruence
and similarity as well as develop their key properties. Mathematically, this approach is
rigorous, but it would generally be regarded as something that would be done in a college
level geometry course for math majors. The exposition at the high school level seems
plausible, and may well work. However, to my knowledge, there is no solid research that
justifies this approach at the K-12 level currently.

It is also worth noting that a similar approach was taken in Russia about 30 years back,
but was quickly rejected. It wasn’t that the teachers were not capable of teaching, though
this may well be a problem for most middle school and many high school math teachers
here. The problem was that it was way too non-standard, and basic geometric facts and
theorems had to be handled in entirely new, untested, and ultimately unsuccessful ways.

Here are some details on the issues that arise in geometry.

3-MD(5) Recognize area as an attribute of plane figures and understand concepts of area mea-
surement.

a. A square with side length 1 unit, called “a unit square,” is said to have “one
square unit” of area, and can be used to measure area.

b. A plane figure which can be covered without gaps or overlaps by n unit squares is
said to have an area of n square units.

Of course, the basic issue is that most figures in the plane are not decomposed into n unit
squares without gaps or overlaps. For example, what of the triangle? 3-MD(5) is a good
beginning for the discussion of area, but it is not more than this.

In fourth grade we have

4-MD(1) Know relative sizes of measurement units within one system of units including km,
m, cm; kg, g; lb, oz.; 1, ml; hr, min, sec. Within a single system of measurement,
express measurements in a larger unit in terms of a smaller unit. Record measurement
equivalents in a twocolumn table. For example, know that 1 ft is 12 times as long as
1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet
and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...

This is the summative standard for a whole sequence of standards that start in the earliest
grades but continue through grade 5 or even grade 6. It is far too complex to be listed
only in grade 4. But that is exactly what is done in Core Standards. It is as though the
authors had a master-list of topics and felt free to sprinkle them wherever there might
have been room.



In grade 5 the analogue of 3-MD(5) is presented:

5-MD(3) Recognize volume as an attribute of solid figures and understand concepts of volume
measurement.

”

a. A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic

unit” of volume, and can be used to measure volume.

b. A solid figure which can be packed without gaps or overlaps using n unit cubes
is said to have a volume of n cubic units.

Partly, I feel that this standard is occuring too early. It takes some time and effort for
students to appreciate the complexity of visualizing solid figures through plane sections
or possibly nets. Partly, as before, this standard is avoiding the real issues, namely,
determining the volumes of figures that can not be decomposed into n cubes without gaps
or overlaps, such as triangular prisms or rectangular cones. When we look at this pair of
issues together, we can begin to see why I feel so uncomfortable with these standards.

At the same time, look at the geometry standards 5-G(3) and 5-G(4).

5-G(3) Understand that attributes belonging to a category of two dimensional figures also
belong to all subcategories of that category. For example, all rectangles have four
right angles and squares are rectangles, so all squares have four right angles.

5-G(4) Classify two-dimensional figures in a hierarchy based on properties.

Except for parsing the convoluted language of the first, both of these standards are at
an astoundingly trivial level for fifth grade. By this time students should be comfortable
with the area formula for a triangle, and should be constructing compound two and three
dimensional figures as well as determining a number of their properties.

In eighth grade the experimental approach to geometry that I mentioned earlier man-
ifests for the first time. First there is a very superficial development of the properties of
some Euclidian transformations in the plane:

8-G(1) Verify experimentally the properties of rotations, reflections, and translations:

a. Lines are taken to lines, and line segments to line segments of the same length.
b. Angles are taken to angles of the same measure.

c. Parallel lines are taken to parallel lines.

Then, based entirely on the relatively weak standard above we are directly given one of
the most subtle definitions of congruence we could possibly find.



8-G(2) Understand that a two-dimensional figure is congruent to another if the second can
be obtained from the first by a sequence of rotations, reflections, and translations;
given two congruent figures, describe a sequence that exhibits the congruence between
them.

It is not the first piece of 8-G(2) that disturbs me — though there are a number of key
steps that are hidden within it — but the second: given two congruent figures, describe a
sequence that exhibits the congruence between them. (By “a sequence” I am presuming
the writers meant “a sequence of rotations, reflections and translations.”) What is being
hidden here is the result that is deep even at the level of a university course in geometry:
given two congruent figures, then there exists a Euclidean transformation that takes the
first to the second, and a Euclidean transformation that takes the second to the first.

It is at the point above, and even more so with the corresponding similarity standard

8-G(4) Understand that a two-dimensional figure is similar to another if the second can
be obtained from the first by a sequence of rotations, reflections, translations, and
dilations; given two similar two dimensional figures, describe a sequence that exhibits
the similarity between them

where I feel that we are dealing with an experiment on a national scale. There are even
more difficulties with the statement “given two similar two dimensional figures, describe
a sequence that exhibits the similarity between them” than was the case with the corre-
sponding statement in 8-G(2).

Before we dare to challenge teachers and students with standards like these, we ab-
solutely have to test the approach in more limited environments, and I find it highly
disturbing that H.-H. Wu, the main author of the greometry standards in Core Standards,
feels able to make the following statement in a recent article:

The mathematical coherence of CCMS also lies at the heart of the discussion of high
school geometry. Briefly, the better standards, such as Californias, insist on teaching
proofs. This is a good thing, but it does place an unreasonable burden on a high
school course on geometry as the only place where any kind of proof can be found
in school mathematics. As a result, some of these courses begin with formal proofs
based on axioms from the beginning, with no motivation. There is another kind of
reaction, however. Giving up entirely on proofs as unlearnable, some courses treat
plane geometry as a sequence of hand-on activities that do not mention proofs. In
addition, both kinds of courses are disconnected from the teaching of rigid motions
(translations, rotations, and reflections) in middle school. What CCMS does is to add
the teaching of dilations to rigid motions in grade 8 using hands-on activities, and on
this foundation, develops high school geometry by proving all the traditional theorems.
For the first time, the school geometry curriculum provides a framework in which all
the apparently unrelated pieces of information now begin to form a coherent whole.
It holds the promise that learning geometry in K-12 can finally become a reality.
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Over the last 12 years Wu and I have collaborated on the California Framework, a number
of other states standards, and on a number of nationally influential documents. Normally,
Wu is very careful about distinguishing between what one hopes is true and what one
knows will work, but in this instance I feel he has allowed his innate hope to overwhelm

caution.
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Eighth Grade Algebra

Another issue with the Core Math Standards is that there are no provisions for eighth
grade algebra. This contrasts with the California standards where the expectation is that
most students will be ready for Algebra I by eighth grade.

Moreover, as the following graph shows, eighth grade Algebra I is basically working
already, with almost 60% of California’s students taking the course either in seventh or
eighth grade.
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It is worth noting that setting standards up so that Algebra I occurs naturally by eighth
grade involves a large amount of preparatory material including basic pre-algebra stan-
dards and certain key geometry standards, such as understanding that the graph of a
linear equation is a straight line. So it is far from sufficient to just list key algebra topics
and decree a course that covers them.

As regards the Core Standards this is an issue I, as a member of the Pathways Com-
mittee, as well as the Validation Committee, have been struggling with for months. We
have been able to rough in courses that are mostly based on the High School Core Stan-
dards, which will work, but we are far from finished with this project.
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Final Remarks

There are also very real strengths in the document. Many of the discussions, among
them ratio and rate in grade 6, and proportion in grade 7, are excellent. They are clear
and mathematically correct presentations of material that is typically very badly done in
most state standards in this country.

Overall, only the very best state mathematics standards, those of California, Mas-
sachusetts, Indiana and Minnesota are stronger than these standards. Most states would
be far better off adopting the Core Math Standards than keeping their current standards.
However, California, and the other states with top standards would almost certainly be
better off keeping their current standards.

In the following pages I detail the comments, organized by grade level, that 1 had
with regard to the final draft of Core Standards. Since many of my objections were not
addressed in the two days before the final version was publicly released, the full list may
have some use.
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